

Neurodevelopmental care policies, practices, and outcomes in France: The EPIPAGE-2 cohort study.

Véronique Pierrat, Pierre-Yves Ancel For the EPIPAGE-2 group.

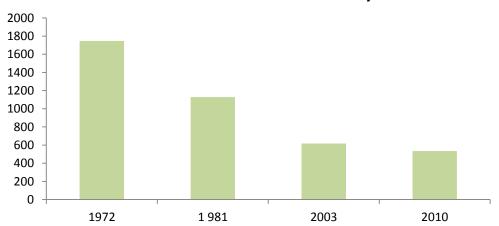
France in 2011

22 regions in the metropolitan area

4 oversea regions

65.34 millions inhabitants

823 394 births


Prematurity rate 7.4% of all births/ 6.6% of live births

Organisation of perinatal care in 2011

- 535 maternity units
- 275 neonatal units
 - 66 level III units
 - 78 level IIb units
 - 131 level IIa units (128 in Epipage-2)

Evolution of the number of maternity wards

Epipage-2

Study design

- Prospective national population-based cohort
- Infants born at 22 to 34 completed WG in all maternity units in 25 French regions
- Recruitment: 8-month period (22 to 26 WG), 6-month period (27 to 31 WG), 5-week period (32-34 WG)
- All survivors were enrolled for longitudinal follow-up and included in the study at 2 years CA if parents consented
- Collection of data at $5^{1/2}$ years of age in progress

Study design

EPIPAGE

Very preterm infants born in 9 regions of France in 1997

 \rightarrow 8 years of age

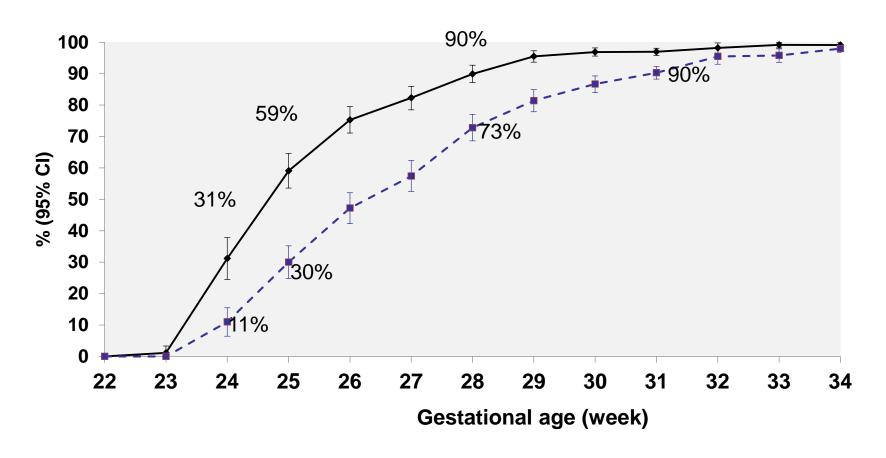
EPIPAGE- 2

Very preterm infants born in 25 regions of France in 2011

 \rightarrow 12 years of age

Aims of the study

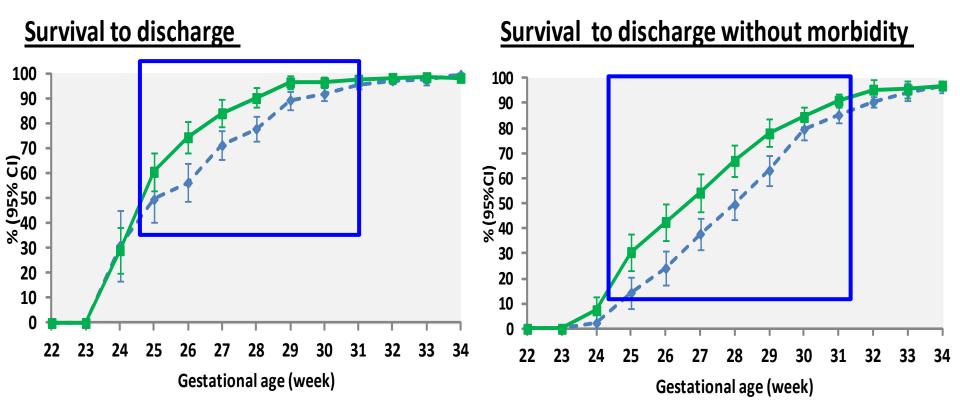
- To describe short- and long-term outcomes in very and moderately preterm babies and their families
- To study medical practices and organization of care and assess their impact on child health and development
- To explore the etiology of preterm birth and identify early predictors of health and developmental problems.



Neonatal period

Ancel PY, JAMA Pediatr, 2015

SURVIVAL TO DISCHARGE IN 2011



- **→** Survival
- ---Survival without severe morbidity

Severe neonatal morbidity: severe bronchopulmonary dysplasia or necrotising enterocolitis stage 2-3 or severe retinopathy of prematurity stage >3 or any of the following severe cerebral abnormalities on cranial ultrasonography: intraventricular haemorrhage grade III or IV or cystic periventricular leukomalacia

SURVIVAL TO DISCHARGE

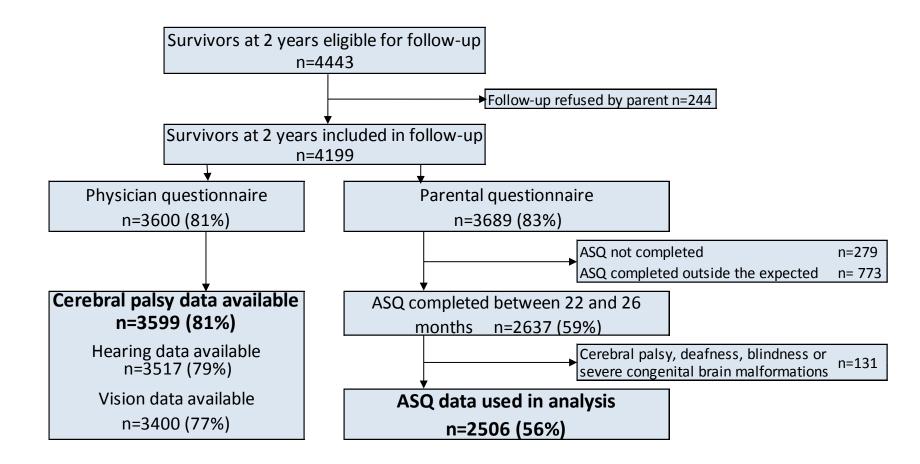
- No survivor at 22-23 weeks
- No change at 24 weeks
- Significant improvment between 25-31 weeks

Perinatal management

	22 weeks	23 weeks	24 weeks	25 weeks	26 weeks
Antenatal steroids					
France – EPIPAGE	2%	12%	57%	76%	81%
UK – EPICure	42%	65%	86%	88%	86%
USA – NICHD	13%	53%	85%	86%	86%
Sweden - EXPRESS	40%	85%	95%	89%	93%
Cesarean section					
France – EPIPAGE	9%	5%	14%	34%	60%
UK – EPICure	5%	6%	14%	31%	44%
USA – NICHD	7%	24%	60%	65%	65%
Sweden - EXPRESS	6%	16%	46%	62%	68%

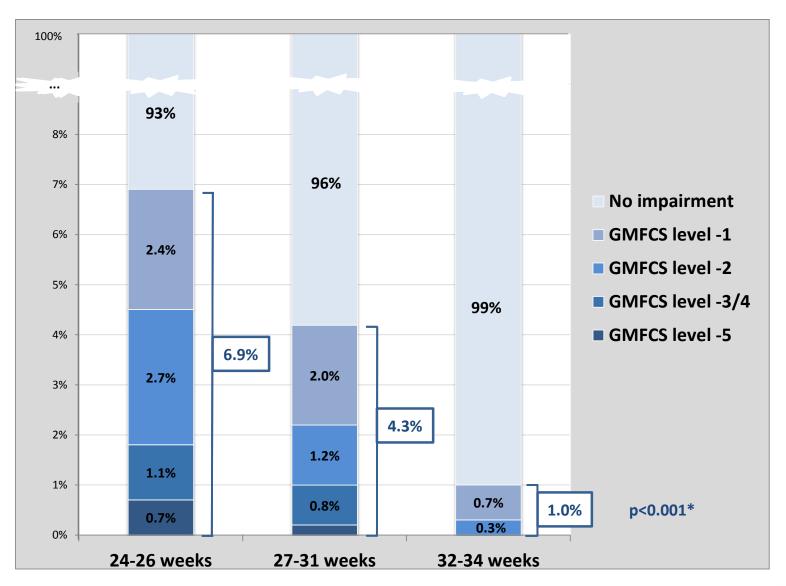
Survival in the neonatal period

	22 weeks	23 weeks	24 weeks	25 weeks	26 weeks
France (2011) EPIPAGE 2	0%	1%	31%	59%	75%
England (2006)	3/152	66/339	178/442	346/521	448/580
EPICure	2%	19%	40%	66%	77%
Australia (2005)	1/20	7/32	22/43	31/46	47/57
	5%	22%	51%	67%	82%
USA – 2003-2007	25/421	226/871	748/1370	1078/1498	1319/1576
	6%	26%	55%	72%	84%
Sweden (2004-07)	5/51	53/101	96/144	167/205	176/206
EXPRESS	10%	52%	67%	81%	85%
Japan (2005)	33/97 34%	153/282 54%	77%	428/501 85%	486/542 90%


- 1. FRANCE 2011 (EPIPAGE 2)
- ENGLAND 2006 (EPICure, Costeloe et al 2012)
- 3. AUSTRALIA 2005 (Doyle et al, 2009)
- 4. USA 2003-2007 (Stoll et al, 2010)
- SWEDEN 2004-07 (EXPRESS study group, 2009)
- JAPAN 2005 (Itabashi et al, 2009)

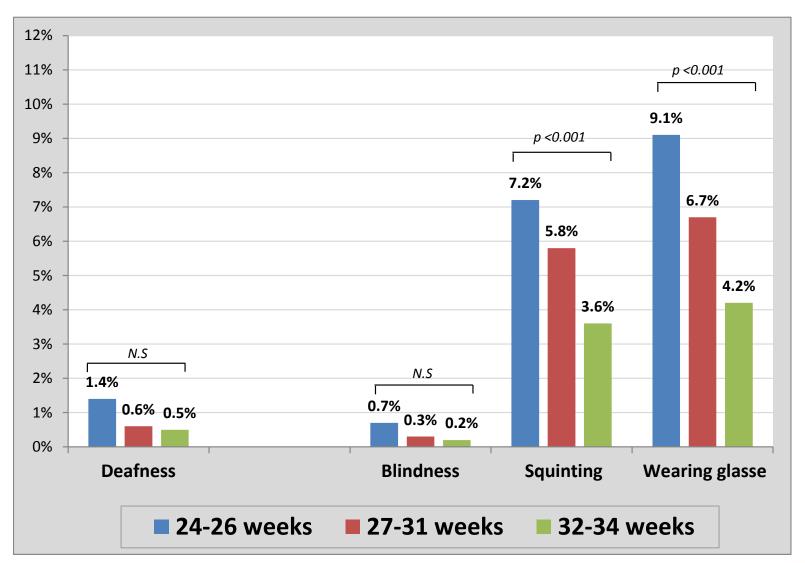
At 2 years corrected age

Pierrat V, BMJ, 2017

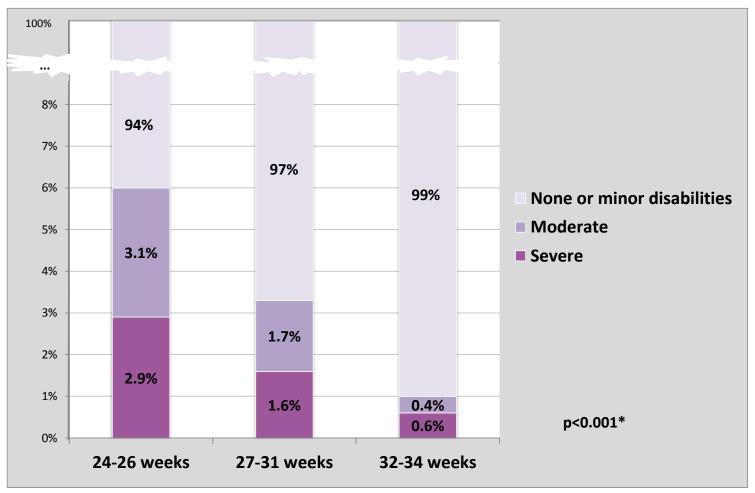


Study population at 2 years corrected age.

Cerebral palsy at 2 years CA by GA groups

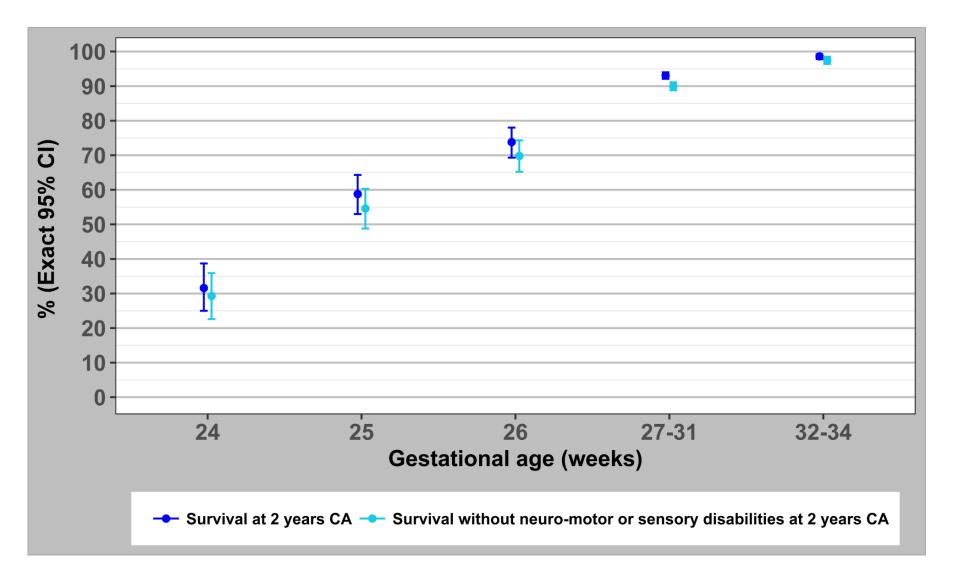


GMFCS: Gross Motor Function Classification System, a higher number indicates a higher degree of severity.



Visual and hearing impairments at 2 years CA by GA groups

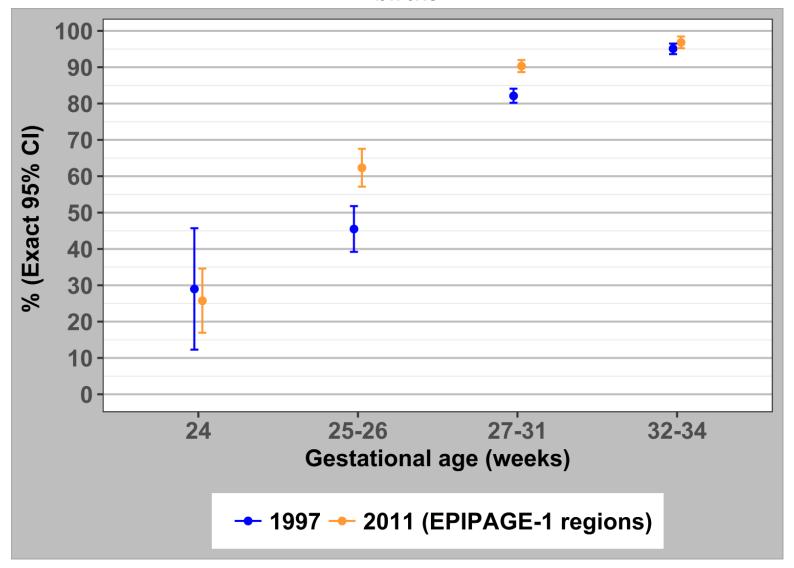
Neuro-motor or sensory disabilities at 2 years corrected age by gestational age groups



^{*} Comparison between gestational age groups 24-26 weeks / 27-31 weeks / 32-34 weeks.

Severe= cerebral palsy GMFCS levels 3-5 and/or bilateral deafness and/or bilateral blindness. **Moderate**= cerebral palsy GMFCS levels 2 and/or unilateral deafness and/or unilateral blindness.

Survival at 2 years CA among live births

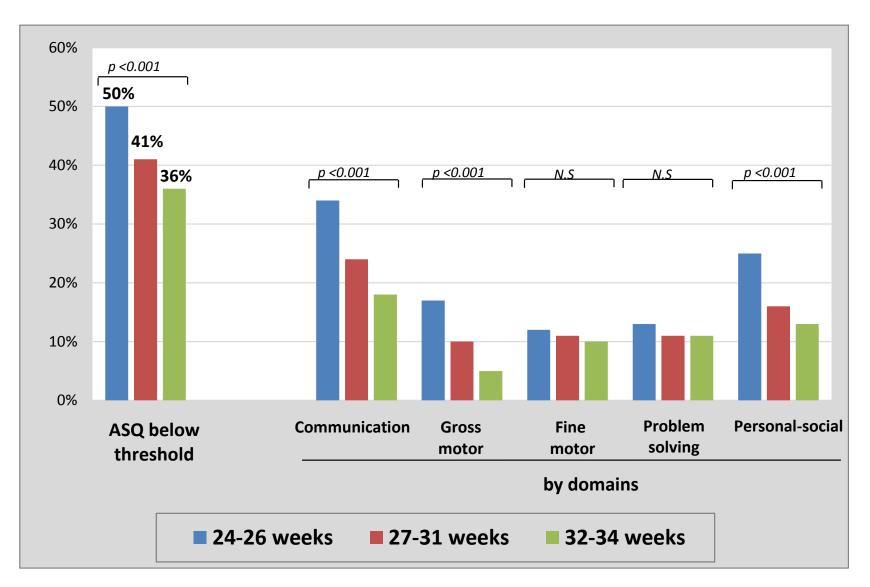


Neuro-motor or sensory disabilities = cerebral palsy GMFCS levels 2-5 and/or deafness and/or blindness.

Comparison 1997 (EPIPAGE-1) v 2011

Survivors without neuro-motor or sensory disabilities at 2 years CA among live births

Ages and Stages Questionnaire (ASQ) at 2 years CA by GA groups


	24-31 weeks* (n = 1884)	24-26 (n = 313)	27-31 (n = 1571)	32-34 weeks (n = 235)	p- value†
ASQ score	229	223	230	235	10,004
(median[IQR])	[199 to 255]	[185 to 250]	[200 to 255]	[205 to 260]	<0.001

^{*}Including one survivor born at 23 weeks + 6 days

Cut-off of 220 identify children at risk of a developmental quotient (DQ) \leq 85 sensitivity 85%, specificity 72% (Flamant, 2011)

Ages and Stages Questionnaire (ASQ) at 2 years CA by GA groups

Using established screening cut-off points (Squire, 2009). Infants with cerebral palsy, deafness, blindness or severe congenital anomalies were excluded.

What this study adds

- In France from 1997 to 2011, severe neonatal morbidities in children born preterm decreased, accompanied by a significant increase in survival without severe/moderate neuro-motor or sensory disabilities at age 2 years.
- Despite improvements in neuro-motor and sensory outcomes, a high risk of developmental delay persisted for all children born preterm.
- Depending on gestational age, between half and one third of children born preterm will need formal developmental evaluation, using parental questionnaire as a first step approach to assess development

IMPLEMENTATION OF DEVELOPMENTAL CARE

Pierrat V, Pediatr Crit Care Med, 2016

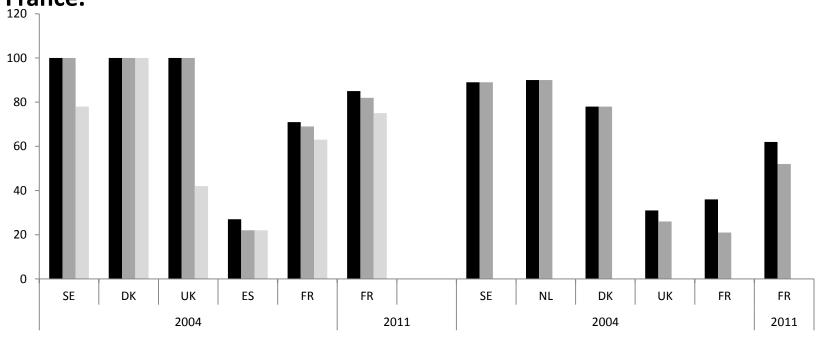
Objectives:

To describe

- the unit's policies towards several DC measures in France in 2011
- the evolution since 2004
- the observed practices at the individual level

To compare

the data with those of other European countries

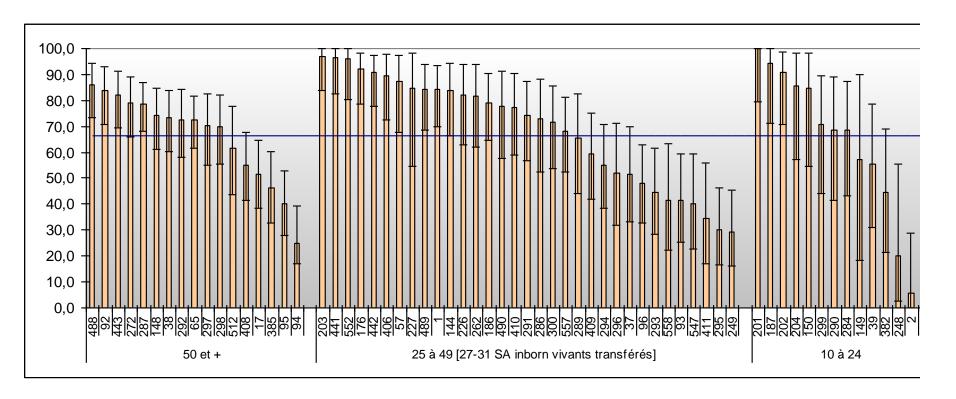


DC policies for neonatal units in France from the 2004 European Science Foundation Survey (ESFs) and 2011 EPIPAGE-2 data

	2004 (n=43)	2011 (n=43)	P value*
Characteristics of the units			
In a teaching hospital	26 (60)	26 (60)	
No. VLBW admitted/year, median (range)	109 (50-300)	128 (30-392)	
Developmental care policies			
Visiting policy features			
Allowed for both parents over 24 h	29 (67)	38 (88)	0.03
Allowed for both parents over 24 h, visit duration	22 (51)	34 (79)	0.01
unlimited and visits allowed during medical rounds	22 (31)	34 (79)	0.01
Facilities for parents			
Beds inside the units	7 (17)	20 (47)	< 0.01
Beds outside the units	22 (51)	23 (53)	0.83
Room to talk and relax	25 (58)	31 (72)	0.11
Bathroom with shower	10 (24)	17 (40)	0.16
Facilities to heat food and/or make drinks	17 (40)	21 (49)	0.32
KC for parents			
Mother routinely encouraged for KC	14 (35)	28 (65)	< 0.01
Father routinely encouraged for KC	8 (20)	25 (58)	< 0.01
Use of a neurobehavioral scale	21 (49)	12 (28)	0.04

Data are n° (%) unless indicated. * McNemar test for pairwise comparison

Comparison of visiting policies and kangaroo care with the 2004 European Science Foundation (ESFs) survey data by country and the 2011 EPIPAGE 2 data from France.



SE, Sweden; DK, Denmark; UK, United Kingdom; ES, Spain; FR, France; NL, The Netherlands

Pallas-Alonso C, Pediatr Crit Care Med, 2012

Variability of KC practices* among French units

Population: 27-31 weeks of GA, inborn, admitted in level III units

* KC during the first week of life

Burguet A, in preparation

KANGAROO CARE AND BREAST FEEDING INITIATION

Pierrat V, Pediatr Crit Care Med, 2016

Objective: To investigate the association of maternal and infant characteristics and unit factors (policies and DC training) with KC initiation

Outcome measure: KC initiation during the first week of life

Variables of interest: KC policies and training in DC

Potential confounders: GA, SGA, single or multiple pregnancy

Nationality, employment before pregnancy,

education level

Analysis strategy: Two-level hierarchical logistic regression analysis with patients (patient characteristics; level 1) nested within units (policies and training in DC; level 2).

KC during the first week of life by gestational age (GA) for neonates admitted to level III neonatal units in France in 2011

	Total	23-26 weeks GA	27-31 weeks GA	p-value**
	n = 3005	n = 545 (14%)	n = 2460 (86%)	p raiac
GA, mean (SD)	28.8 (1.8)	25.5 (0.7)	29.4 (1.4)	< 0.01
Weight, mean (SD)	1206.1 (337.4)	813.3 (133.8)	1270.8 (318.1)	< 0.01
KC during the first week of life				
Yes	1694 (61)	159 (32)	1535 (66)	< 0.01
Day 1–3	776 (47)	49 (32)	727 (48)	4.0.01
Day 4–7	891 (53)	105 (68)	786 (52)	< 0.01
No	1143 (39)	344 (68)	799 (34)	< 0.01
Main causes				
Policy of the unit or nursing staff unavailable	181 (18)	42 (13)	139 (20)	
Parents unavailable or anxious	252 (26)	41 (13)	211 (30)	< 0.01
Infant unstable	575 (55)	235 (74)	340 (49)	
Other	4 (0)	1 (0)	3 (0)	

KC during the first week of life by groups of units' policies for neonates admitted to level III neonatal units in France in 2011

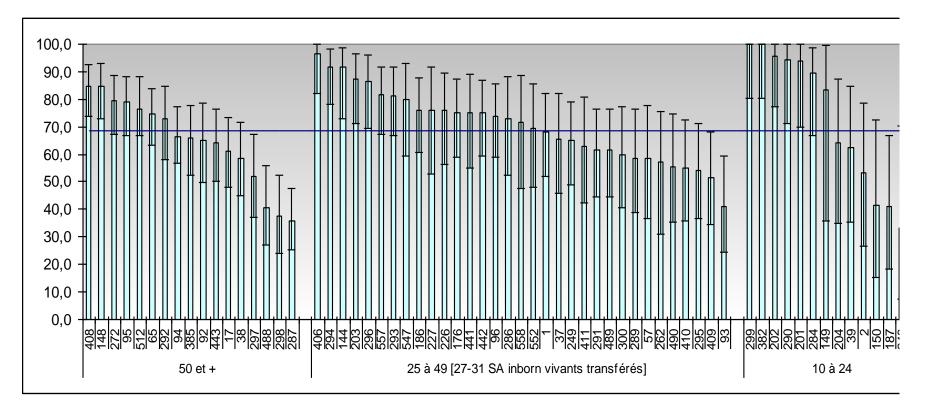
	KC group 1 n = 6	KC group 2 n = 20	KC group 3 n = 40	р
KC initiation (N, %)	99 (39)	508 (55)	1087 (68)	<0.001

KC group 1: KC allowed only on request for the mother and/or the father, with restrictions on minimal and maximal durations.

KC group 2: KC allowed often or routinely for the mother, only on demand for father, with restriction on minimal duration.

KC group 3: KC encouraged often or routinely for mothers and fathers without any limitation on duration.

Multilevel logistic regression analysis of patient and unit factors associated with KC initiation


	Model 1		Model	2		Model 3	
	(empty model)	(p	atient chara	cteristics)	(pat	ient and unit	factors)
	n=2636		n=263	6		n=2636	
Patient characteristics		OR	95% CI	p-value	OR	95% CI	p-value
Gestational age							
23–26 weeks		1		< 0.01	1		۰,0,01
27–31 weeks		5.8	4.5-7.5	< 0.01	5.9	4.5-7.6	< 0.01
Pregnancy							
Single		1.7	1.4-2.0	< 0.01	1.7	1.4-2.0	< 0.01
Multiple		1		< 0.01	1		< 0.01
Small-for-gestational age							
No		1.3	1.1-1.6	< 0.01	1.3	1.1-1.6	< 0.01
Yes		1		< 0.01	1		< 0.01
Mother employed before pregnancy							
Yes		1.8	1.5-2.2	< 0.01	1.8	1.5-2.2	< 0.01
No		1		< 0.01	1		< 0.01
Unit factors							
KC policies							
Group 1					1		
Group 2						1054	0.02
					2.3	1.0-5.4	
Group 3					3.3	1.5-7.4	
DC training					2.5	1070	
NIDCAP					3.5	1.8-7.0	
Sensory motor program					0.6	0.3-1.2	< 0.01
Introductory course					2.7	1.5-4.7	
No training					1		

Multilevel logistic regression analysis of patient and unit factors associated with KC initiation

	Model 1	Model 2	Model 3	
	(empty model)	(patient characteristics)	(patient and unit factors)	
	n=2636	n=2636	n=2636	
Random effect				
P value	< 0.01	< 0.01	< 0.01	
Variance for neonatal units	1.0757	1.2063	0.6440	
Standard error	0.238	0.2668	0.1647	
Proportional change in variance (PCV)*		-0.12	0.40	

Variability of BF initiation among French units

- Population: 27-31 weeks of GA, inborn, admitted in level III units
- Breast feeding initiation: 1549/2266 (68.4%)
- Units'factors associated with breast feeding initiation: Professional trained in human lactation, fully available for breastfeeding support (OR 1.4 95%CI 1.04-2.0).
 Nidcap (OR 1.4 95%CI 1.04-1.9).

Conclusion

 Conceptual models to guide clinical care appear to affect French practices

 The application of such models to disseminate and strengthen the implementation of a wider range of DC measures should be explored in different cultural backgrounds

BREAST FEEDING AT DISCHARGE

Mitha A, in preparation

Objective: To investigate the association of maternal and infant characteristics and unit factors (policies and DC training) with BF at discharge

Outcome measure: BF at discharge

Variables of interest: Availability of professionals trained in human lactation and training in DC

Potential confounders: GA, SGA, single or multiple pregnancy
Nationality, employment before pregnancy,
education level

Analysis strategy: Two-level hierarchical logistic regression analysis with patients (patient characteristics; level 1) nested within units (policies and training in DC; level 2).

Mitha A, in preparation

Breastfeeding at discharge

- GA: 24-31 weeks
- 47% 95% CI 45-49
- Variations between units: 21% to 84%
- Factors associated with BF at discharge
 - Kangaroo care during the first wek of life
 - Professional trained in human lactation, fulltime available for BF support
 - Nidcap

MATERNAL INFORMATION ON PAIN ASSESSMENT AND MANAGEMENT

Pierrat V, in preparation

Objective: To identify individual and organizational factors associated with maternal information on pain.

Outcome measure: Maternal information on pain

Variables of interest: Training in DC

Potential confounders: GA, SGA, single or multiple pregnancy

Nationality, employment before pregnancy,

education level

Analysis strategy: Multinomial multilevel logistic regression analysis with patients (patient characteristics; level 1) nested within units (training in DC; level 2).

Outcome measure: Maternal information on pain

• GA: 24-31 weeks

• N = 1997

MIP: assessment and management

Sufficiently informed: 22%

Somewhat: 45%

No: 22%

Factors associated with pain information

Individual characteristics of mothers

Level of education

Cohabitation

Individual characteristics of infants

GA

Characteristics of mothers related to unit organization

Daily visits of mothers

Team support perceived by mothers

Unit characteristics

Nidcap

NIDCAP IMPLEMENTATION IN 2011

- 1997-2011
- 1 NIDCAP training center (Brest)
- 11 level III units/ 1 level IIb unit

Acknowledgements

We thank all members of the EPIPAGE 2 Study Group who participated to the study for its substantial contribution to the conception, design, and acquisition of data.

- Alsace: D Astruc, P Kuhn, B Langer, J Matis (Strasbourg), C Ramousset; Aquitaine: X Hernandorena (Bayonne), P Chabanier, L Joly-Pedespan (Bordeaux), MJ Costedoat, A Leguen; Auvergne: B Lecomte, D Lemery, F Vendittelli (Clermont-Ferrand); Basse-Normandie: G Beucher, M Dreyfus, B Guillois (Caen), Y Toure; Bourgogne: A Burguet, S Couvreur, JB Gouyon, P Sagot (Dijon), N Colas; Bretagne: J Sizun (Brest), A Beuchée, P Pladys, F Rouget (Rennes), RP Dupuy (St-Brieuc), D Soupre (Vannes), F Charlot, S Roudaut; Centre: A Favreau, E Saliba (Tours), L Reboul; Champagne-Ardenne: N Bednarek, P Morville (Reims), V Verrière; Franche-Comté: G Thiriez (Besançon), C Balamou; Haute-Normandie: L Marpeau, S Marret (Rouen), C Barbier; Ile-de-France: G Kayem (Colombes), X Durrmeyer (Créteil), M Granier (Evry), M Ayoubi , A Baud, B Carbonne, L Foix L'Hélias, F Goffinet, PH Jarreau, D Mitanchez (Paris), P Boileau (Poissy), L Cornu, R Moras; Languedoc-Roussillon: P Boulot, G Cambonie, H Daudé (Montpellier), A Badessi, N Tsaoussis; Limousin: A Bédu, F Mons (Limoges), C Bahans; Lorraine: MH Binet, J Fresson, JM Hascoët, A Milton, O Morel, R Vieux (Nancy), L Hilpert; Midi-Pyrénées: C Alberge, C Arnaud, C Vayssière (Toulouse), M Baron; Nord-Pas-de-Calais: ML Charkaluk, V Pierrat, D Subtil, P Truffert (Lille), S Akowanou, D Roche; PACA et Corse: C D'Ercole, C Gire, U Simeoni (Marseille), A Bongain (Nice), M Deschamps; Pays de Loire: B Branger (FFRSP), JC Rozé, N Winer (Nantes), V Rouger, C Dupont; Picardie: J Gondry, G Krim (Amiens), B Baby; Rhône-Alpes: M Debeir (Chambéry), O Claris, JC Picaud, S Rubio-Gurung (Lyon), C Cans, A Ego, T Debillon (Grenoble), H Patural (Saint-Etienne), A Rannaud; Guadeloupe: E Janky, A Poulichet, JM Rosenthal (Point à Pitre), E Coliné; Guyane: A Favre (Cayenne), N Joly; Martinique: S Châlons (Fort de France), V Lochelongue; La Réunion: PY Robillard (Saint-Pierre), S Samperiz, D Ramful (Saint-Denis).
- Inserm UMR 1153: PY Ancel, V Benhammou, B Blondel, M Bonet, A Brinis, ML Charkaluk, A Coquelin, M Durox, L Foix-L'Hélias, F Goffinet, M Kaminski, G Kayem, B Khoshnood, C Lebeaux, L Marchand-Martin, V Pierrat, J Rousseau, MJ Saurel-Cubizolles, D Sylla, D Tran, L Vasante-Annamale, J Zeitlin.

Fundings

Institute for Research in Public Health and its Financial partners and EQUIPEX investment program for the future coordinated by the National Research Agency (ANR-11-EQX-0038)

The PREMup foundation

La Fondation de France (N° 00050329)

La Fondation pour la Recherche Médicale (N°SPF20160936356)

