
r e v i e w 

nature medicine  VOLUME 16 | NUMBER 11 | november 2010	 1267

Injury to tissue and nerves initiates an inflammatory response that is 
intended to contain pathogens, clear damaged tissues and promote 
repair. As one of the five cardinal signs of inflammation, pain (dolor) 
is initially protective and beneficial to recuperation. However, under 
certain conditions, the pain lingers and becomes chronic even after 
the injury has healed. Chronic pain affects millions of people and is 
difficult to treat. The mechanisms by which chronic pain emerges 
after acute injury remain unclear.

Although pain is processed in the nervous system, the immune 
system, astrocytes and microglia also contribute to chronic pain 
hypersensitivity1–6. An emerging concept is that the immune cells, 
glia and neurons form an integrated network in which activation of 
an immune response modulates the excitability of pain pathways. In a 
manner analogous to neurons, immune cells and glia show dynamic, 
activity-dependent plasticity and contribute to neuronal hyperex-
citability in pain transmission pathways. Once activated by injury, 
immune and immune-related cells such as keratinocytes and vascu-
lar endothelial cells also synthesize and secrete anti-inflammatory  
cytokines, proresolution lipid mediators and opioid peptides to  
suppress pain7,8.

Inflammation and peripheral nociceptor sensitization
Upon injury, inflammation is triggered by innate immune activa-
tion of pattern-recognition receptors including Toll-like receptors 
(TLRs) that recognize and bind invading pathogens or endogenous 
molecules released from damaged cells, such as heat shock proteins 

and high mobility group box 1 protein9,10 (Fig. 1). TLRs are expressed 
in immune cells, including monocytes or macrophages and dendritic 
cells, and in immune-related cells such as keratinocytes. Binding to 
TLRs is followed by activation of nuclear factor-κB (NF-κB) signaling 
and the release of inflammatory cytokines. Resident immune cells, 
mast cells and macrophages are also activated within minutes of injury 
and release proinflammatory cytokines, chemokines, effectors of 
the complement cascade (C3a and C5a) and vasodilators, including 
vasoactive amines and bradykinin. Blood-borne neutrophils, mono-
cytes and T lymphocytes adhere to the vessel walls, extravasate and 
accumulate at the site of injury. These immune cells contribute to 
peripheral nociceptive sensitization by releasing soluble factors and 
interacting directly with nociceptors.

Interactions between immune cells and nociceptors. Mast cells are 
granulated resident immune cells that are divided into mucosal and 
connective tissue subtypes and are found close to capillaries. They 
participate in innate host defense and allergic reactions and are 
degranulated within minutes of an inflammatory reaction, resulting  
in the release of histamine, bradykinin and other mediators that  
contribute to vasodilation11.

Recent work by Folgueras et al.12 suggests that degranulation of mast 
cells requires direct interaction between mast cells and peripheral nerve 
terminals, which is mediated by the calcium-dependent cell adhesion 
molecule N-cadherin (Fig. 1). N-cadherin is expressed in both mast 
cells and primary sensory neurons and is cleaved by metalloproteinase 
MT5-MMP (MMP-24), which is expressed by neurons13. Expression 
of N-cadherin is increased in MT5-MMP–deficient mice, and this 
gives rise to increased interactions between mast cells and nerve 
terminals, enhanced mast cell degranulation and increased thermal  
pain sensitivity (thermal hyperalgesia). Interestingly, MT5-MMP 
mutant mice do not develop inflammatory thermal hyperalgesia.  
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Interactions between the immune and 
nervous systems in pain
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Immune cells and glia interact with neurons to alter pain sensitivity and to mediate the transition from  
acute to chronic pain. In response to injury, resident immune cells are activated and blood-borne immune cells  
are recruited to the site of injury. Immune cells not only contribute to immune protection but also initiate 
the sensitization of peripheral nociceptors. Through the synthesis and release of inflammatory mediators and 
interactions with neurotransmitters and their receptors, the immune cells, glia and neurons form an integrated 
network that coordinates immune responses and modulates the excitability of pain pathways. The immune system 
also reduces sensitization by producing immune-derived analgesic and anti-inflammatory or proresolution agents.  
A greater understanding of the role of the immune system in pain processing and modulation reveals potential 
targets for analgesic drug development and new therapeutic opportunities for managing chronic pain.

f o c u s  o n  pa i n
©

 2
01

0 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

http://www.nature.com/naturemedicine/
http://www.nature.com/doifinder/10.1038/nm.2234


r e v i e w

1268	 VOLUME 16 | NUMBER 11 | november 2010  nature medicine

This may be due in part to preemptive degranulation of mast cells in 
the absence of suppression of mast cell–nerve terminal interactions 
by MT5-MMP12.

Mast cells are found close to primary nociceptive neurons and 
contribute to nociceptor sensitization in a number of contexts. 
Injection of the secretagogue compound 48/80 promotes degranu-
lation of mast cells in the dura and leads to excitation of menin-
geal nociceptors14. Mast cell degranulation also contributes to the 
rapid onset of nerve growth factor–induced thermal hyperalgesia15. 
Pelvic pain associated with neurogenic cystitis was eliminated in 
mice lacking mast cells16. Although these findings indicate that 
resident mast cells sensitize peripheral nociceptors, it is unclear 
which chemical mediator(s) derived from mast cells are essential for 
this effect. Histamine has an important role in mediating mast cell-
induced nociceptor activation16,17, but surprisingly, tumor necrosis 
factor-α (TNF-α) seems not to be required for mast cell–dependent 
pelvic pain16.

Macrophages are derived from circulating monocytes and are main-
tained by the local proliferation and maturation of blood monocytes 
after diapedesis. Migrating blood monocytes are recruited to the site 
of injury and mature within hours to increase the proportion of macro
phages in the inflamed area within days to weeks. Resident macro-
phages become phagocytic almost immediately after injury.

The number of macrophages is increased at the site of nerve injury 
(as indicated by increased staining for ED1 (the rat homolog of human 

CD68))18,19 and correlates with the development of mechanical allo-
dynia, pain induced by a normally non-noxious stimulus, after nerve 
injury18. The recruitment of macrophages after nerve injury is medi-
ated by several inflammatory cytokines. TNF-α, which is released 
from Schwann cells immediately after nerve injury, induces MMP-9. 
In turn, MMP-9 promotes migration of macrophages to the injured site 
via breakdown of the blood-brain barrier 20,21 (Fig. 1). Interleukin 15  
(IL-15), which acts on B cells and promotes T cell proliferation, is 
upregulated in nerves a few hours after injury. Intraneural injection 
of IL-15 into the sciatic nerve induces the infiltration of macrophages 
and T cells into the nerve, an effect that is blocked by antibodies to 
IL-15 and by the ganglioside 9-O-Ac GD1b (neurostatin), an IL-15 
modulator that binds IL-15 with high affinity22. Like TNF-α, IL-15 
can activate MMP-9 (ref. 23) (Fig. 1). Consistent with their pro-nocic-
eptive roles, TNF-α induces peripheral nociceptor sensitization24, and 
intraplantar injection of IL-15 induces mechanical hyperalgesia25.

Following recruitment and activation, macrophages contribute 
to nociceptor sensitization by releasing several soluble mediators. 
Expression of the chemokine macrophage inflammatory protein-1α 
(MIP-1α) and its receptors CCR1 and CCR5 is increased in macro-
phages and Schwann cells after partial ligation of the sciatic nerve and 
contributes to the development of neuropathic pain26.

Depletion of circulating monocytes and macrophages by liposome-
encapsulated clodronate partially reduces thermal and mechanical 
hyperalgesia19,27 without altering mechanical allodynia28 in models 
of neuropathic pain. Although this suggests that macrophages may 
have only a minor role in neuropathic pain, caution is warranted in 
interpreting these results, as clodronate does not effectively deplete 
resident macrophages29. Resident macrophages have an important 
role in polymorphonuclear leukocyte infiltration and acute inflam-
mation, as demonstrated by conditional macrophage ablation30. This 
strategy could be used to clarify the role of resident macrophages in 
chronic pain.

Neutrophils are the most abundant polymorphonuclear leukocytes. 
Neutrophil migration is associated with inflammatory pain31,32. 
Within the first hour of the onset of inflammation, neutrophils 
migrate through the vascular endothelium and accumulate at the site 
of injury. Nerve terminals influence neutrophil recruitment through 
neurogenic inflammation, which is also called sterile inflammation 
because no pathogens are involved. During neurogenic inflamma-
tion, primary afferent neurons generate impulses that spread through 
neighboring nerve terminals, resulting in the release of the vasoactive 
neuropeptides substance P and calcitonin gene-related peptide  
(CGRP) at peripheral branches (Fig. 1). IL-1 can also bind nerve 
terminals33 and induce substance P release and migration of poly-
morphonuclear leukocytes7,33. Notably, mast cell degranulation is 
also facilitated by substance P and CGRP34. Synergistic neuroimmune 
interactions, in which multiple soluble mediators can amplify a 
response and increase the recruitment of cells, facilitate sensitization 
and the emergence of a chronic pain state. By knocking out neutral 
endopeptidase, a key enzyme that controls neurogenic inflammation, 
both neurogenic inflammation and neuropathic pain behavior can be 
enhanced in mice35 (Fig. 1).

Lymphocytes contribute to the sensitization of peripheral noci
ceptors, but the data regarding their contribution are less conclusive 
than for other immune cells. T cells infiltrate the sciatic nerve and 
dorsal root ganglion (DRG) after nerve injury18,36. Hyperalgesia and 
allodynia induced by nerve injury are markedly attenuated or abro-
gated in rodents lacking T cells37–39 and the immunosuppressant rapa
mycin attenuates neuropathic pain in rats, partly owing to an effect 
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Figure 1  Immune activation and nociceptor sensitization after 
injury. Injury initiates the release of mediators that activate TLRs on 
keratinocytes (top) and mast cells (MC) close to the nerve terminal. 
Vasodilators are also released, promoting adhesion and transmigration of 
immune cells including T cells (T), neutrophils (N) and monocytes (MN), 
and recruitment of macrophages (Mφ). These cells, once activated, release 
a battery of inflammatory mediators that act on receptors expressed on 
adjacent nociceptor nerve terminals, leading to peripheral nociceptor 
sensitization. Targets include cytokine receptors (CytR), G protein–coupled 
receptors (GPCR), ligand-gated channels (LGC) and tyrosine kinase 
receptor type 1 (TrkA). Three examples of interactions between immune 
cells and nerve terminals are depicted. (1) Mast cell degranulation 
requires direct contact between mast cells and nerve terminals, mediated 
by N-cadherin (N-cad). The metalloproteinase MMP-24 prevents mast 
cell degranulation by digesting N-cad. (2) Release of TNF-α and IL-15 
by peripheral nerves and Schwann cells activates MMP-9 and facilitates 
recruitment of macrophages. (3) Nociceptive nerve terminals can secrete 
substance P (SP) and CGRP through antidromic activation of neighboring 
nerve terminal branches (see text). Substance P and CGRP promote 
vasodilation and extravasation of immune cells. Neutral endopeptidase 
(NEP) restrains neuroinflammation by degrading substance P and CGRP.
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on T cells40. Among the subsets of T cells, type 1 and 2 helper T cells 
(TH1 and TH2 cells) have been shown to have different roles in neuro-
pathic pain. TH1 cells facilitate neuropathic pain behavior by releasing 
proinflammatory cytokines (IL-2 and interferon-γ (IFNγ)), whereas 
TH2 cells inhibit it by releasing anti-inflammatory cytokines (IL-4, 
IL-10 and IL-13)37. It is noteworthy that the concentration of IL-17 
in the spinal cord of rats is increased after nerve injury38. Although 
natural killer (NK) cells are recruited to the injured sciatic nerve in 
rats, they do not seem to be involved in neuropathic pain because 
there is no difference in the number of NK cells between allodynic 
and nonallodynic rats18. B cells also show no change in people with 
chronic pain41,42 and do not seem to contribute to the development 
of neuropathic pain in mice38,39.

The complement system is an important part of the innate defense43. 
Effectors of the complement cascade attack microbes, activate mast cells 
and basophils, and promote chemotaxis of leukocytes. These proteins 
are normally present in the blood but can leak out to inflamed tissue.

The complement system also has a role in inflammatory hyper-
algesia and neuropathic pain31,44–46. C5a, an anaphylatoxin, is an 
important effector of the complement cascade and upon binding 
to C5aR1 receptors on neutrophils it becomes a potent neutrophil 
attractant. Injection of C5a and C3a into the hindpaw of rats or 
mice induces behavioral hyperalgesia31,46,47, whereas PMX53, a C5a 
receptor antagonist, suppresses it31,48. Zymosan-induced recruitment 
of neutrophils is inhibited by PMX53 and C5a-induced hyperalgesia 
is reduced in neutrophil-depleted rats31.

Complement components also have a direct effect on nociceptors. 
Application of C5a or C3a to peripheral nerves ex vivo sensitizes C fiber 
nociceptors46. This effect might be mediated by a direct effect of binding 
C5a receptors, as C5a receptor mRNA is expressed in primary sensory 
neurons46. Although these observations suggest that complement  
proteins have multiple parallel effects on immune cells and nociceptors, 
one plausible scenario is that activation of C nociceptors by the comple
ment fragment leads to neurogenic inflammation, which facilitates 
neutrophil migration and hyperalgesia (Fig. 1). C5a is also involved in 
neuropathic pain, as it activates spinal microglia in neuropathic pain49 
and blockade of the complement cascade in the spinal cord reverses  
neuropathic pain behavior50. Although C5a has a role in pain hyper-
sensitivity, the formation of the membrane attack complex, another 
end product of the complement cascade for cell lysis, does not seem to  
contribute to neuropathic pain44,49.

Interactions in sensory ganglia. Peripheral nerve fibers and their 
cell bodies in the DRG and trigeminal ganglion relay injury-related 
primary afferent input to the spinal and medullary dorsal horn. The 
cell bodies of DRG and trigeminal ganglion neurons are surrounded 
by small satellite glial cells (SGCs). Like astrocytes in the CNS, SGCs 
are connected by gap junctions and support DRG neurons by supply-
ing nutrients and buffering extracellular ion and neurotransmitter 
levels. An estimated 15,000 major histocompatibility complex II– 
positive cells, probably macrophages, are found in each of the  
lumbar DRGs36 and provide immune protection. Blood-derived 
macrophages and T cells invade the DRG after nerve injury36,51. 
Macrophages then gradually move through satellite cells and migrate 
closer to the neuronal soma (Fig. 2). These macrophages eventually 
form perineuronal rings under the satellite cells around medium-
to-large neurons after constriction of the sciatic nerve36,51. Close 
opposition of satellite cells and neurons favors interactions through 
paracrine signaling, an important mechanism in the DRG that under-
lies peripheral sensitization6.

New evidence has emerged on how these interactions promote the 
transition to a chronic pain state. Satellite cells in the DRG show 
increased gap junction coupling after injection of complete Freund’s 
adjuvant (CFA) into the hindpaw, an effect that parallels a reduction 
in the pain threshold52,53. In the trigeminal ganglion, injection of 
the retrograde tracer True Blue into the temporomandibular joint 
capsule leads to accumulation of the dye in SGCs after injection of 
capsaicin into the temporomandibular joint54. Importantly, there is 
no gap junction coupling between DRG neurons or between neurons 
and SGCs in the absence of noxious stimulation53. Thus, increased 
communication between SGCs and between neurons and SGCs after 
peripheral noxious stimulation increases neuronal excitability and 
enhances primary afferent input. Increased communication can also 
spread into neighboring neurons and SGCs. Thalokoti et al.55 showed 
that activation of the sensory neurons that innervate the mandibular 
territory led to pain-related cellular changes not only in neurons 
and SGCs of the mandibular division but also in the maxillary and  
ophthalmic divisions of the trigeminal ganglion. This cross-excitation 
within the sensory ganglion provides a mechanism for extraterritorial 
pain that occurs outside the injured dermatome54.

SGCs can also affect neuronal excitability through reduced potas-
sium buffering (Fig. 2a). Extracellular potassium homeostasis influ-
ences neuronal excitability. When extracellular potassium is increased, 
the activation threshold is lowered and neuronal excitability increases. 
SGCs, but not neurons, in trigeminal ganglia express the inward rec-
tifying K+ channel Kir4.1, which has a key role in buffering K+ con-
centration in the ganglion56. Ten days after injury of the infraorbital 
nerve—the time at which neuropathic pain behavior develops—Kir4.1 
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Figure 2  Modulation of sensory nerve activity in dorsal root ganglia by 
SGCs. (a) Nerve injury reduces Kir4.1 expression in SGCs, resulting in 
reduced K+ buffering and increased neuronal excitability. (b) A reciprocal  
paracrine signaling loop involving NO, COX, PGE2, CGRP and IL-1β. 
Macrophages infiltrate into the space between SGCs and neurons and 
secrete inflammatory mediators. (c) Chemokine-mediated regulation of 
neuronal TRP channels through paracrine (Schwann cell–derived CCL3 
and neuronal CCR1) and autocrine (neuron-derived CCL2 and neuronal 
CCR2) signaling. (d) P2X7R in SGC tonically inhibits P2X3R in neurons 
by activating neuronal P2Y1.
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expression is reduced by 40% in the trigeminal ganglion57. Silencing 
of Kir4.1 in the trigeminal ganglion by small interfering RNA (siRNA) 
is also sufficient to induce mechanical hypersensitivity in the cor-
responding peripheral field57.

A reciprocal paracrine signaling loop between neurons and SGCs 
in the trigeminal ganglion also contributes to sensitization of noci
ceptors58 (Fig. 2b). Release of CGRP by neurons induces the produc-
tion of IL-1β in SGCs. IL-1β, but not IFN-γ or TNF-α, increases the 
production of prostaglandin E2 (PGE2) by activating the cyclooxy-
genase-2 (COX2) pathway in SGCs. Nitric oxide (NO) produced in 
trigeminal ganglion neurons also induces PGE2 production, probably 
by activating COX1. PGE2 in turn stimulates the production of CGRP 
in trigeminal ganglion neurons, completing the positive feedback 
loop (Fig. 2). Although this feedback loop can increase sensitiza-
tion of nociceptors6, further study is needed to confirm whether this 
increases pain hypersensitivity in vivo.

The accumulation of pro- and anti-inflammatory cytokines and 
chemokines in the DRG after injury also contributes to the sensiti-
zation of sensory neurons. TNF-α, IL-1β, IL-10 and several chemo
kines are upregulated in the DRG shortly after injury45,59. TNF-α is 
also transported retrogradely to the DRG60. The chemokine mono-
cyte chemoattractant protein-1 (MCP-1, or CCL2) and its receptor 
CCR2 are also upregulated in DRG neurons in models of neuropathic 
pain26,61,62. These cytokines and chemokines act on their respective 
receptors on DRG neurons and, by coupling to transient receptor 
potential (TRP) and sodium channels, generate ectopic discharges and 
enhance primary afferent input to the spinal dorsal horn (reviewed 
in ref. 6) (Fig. 2c).

Inhibitory effect of immune cells on pain. Upon injury, the immune 
system also releases factors that promote tissue recovery, suppress 
inflammation and reduce pain. Leukocytes and keratinocytes release 
opioids, mainly β-endorphin, after injury7,63,64. Recent studies indi-
cate that endomorphins are expressed in T cells, macrophages and 
fibroblasts from the synovial tissue of patients with osteroarthritis 
and rheumatoid arthritis65. The inflammation-evoked release of 
chemokines such as CXCL1 and CXCL2 not only facilitates leuko-
cyte recruitment but also induces the release of opioid peptides from 
migrating leukocytes7. Activation of the endothelin-B receptor can 
also trigger the release of β-endorphin from keratinocytes63.

The peripheral purinergic system negatively regulates immune 
responses and pain. Purinergic receptors consist of G protein–﻿coupled 
P2Y and P1 receptors and the ligand-gated P2X family. The P1 receptor, 
which is activated by adenosine, facilitates analgesia at the spinal 
level66. P2Y receptors are activated by ATP, ADP and UTP, whereas 
P2X receptors are activated by ATP alone. When it binds P2Y receptors, 
ATPγS, a slowly hydrolyzing ATP analog, inhibits secretion of TNF-α 
and CCL2 and increases release of IL-10 after TLR activation in human 
monocytes67. In the DRG, P2X7R in satellite cells tonically inhibits 
P2X3R expression in neurons by activation of neuronal P2Y1Rs via 
SGC-derived ATP, which prevents the development of inflammatory 
pain in rats68 (Fig. 2d).

Several classes of lipid mediators including lipoxins, resolvins and 
neuroprotectins69 are produced by neutrophils, vascular endothelial 
cells and other immune cells when they are activated. These lipid 
mediators actively promote resolution of inflammation. Lipoxins 
suppress inflammatory pain70. Resolvins are derived endogenously 
from omega-3 essential polyunsaturated fatty acids. Two series of 
resolvins, the D and E series, have been identified. Resolvin D1  
(RvD1) inhibits IL-1β production in microglia, and RvD2  

attenuates neutrophil migration to the site of inflammation by inhib-
iting leukocyte-endothelial interactions in vivo69,71. The analgesic 
properties of resolvins are not limited to their anti-inflammatory 
actions. Both RvE1 and RvD1 reduce hyperalgesia in the formalin, 
carrageenan and CFA models of inflammatory pain8. RvE1 also inhib-
its mechanical allodynia and potentiation of NMDA receptor currents 
induced by TNF-α8.

CNS responses to peripheral injury
Central glial responses to peripheral injury. Glia show increased 
activity in multiple pain processing pathways in response to peripheral 
injury72–75. Activation signals are relayed to the brain by peripheral 
immune activation and through afferent nerve input76–78, circulating 
cytokines79 and immune cell trafficking38,39. In several animal models 
of inflammatory pain, injection of formalin80,81, zymosan81,82 or car-
rageenan83,84 into the hindpaw induces activation of spinal glia (as 
assessed by increased expression of CD11b, ionized calcium-binding 
adapter molecule (Iba1), glial fibrillary acid protein (GFAP) or S100 
calcium-binding protein B) and behavioral hyperalgesia. However, 
conflicting results have been obtained following injection of CFA; 
some groups have reported activation of spinal glia72,85, whereas 
others have not82,86,87. Consistent activation of glia is observed in 
studies on deep tissue injury of the muscle76,88, joint89, nerve trunk90 
or viscera91,92, with consistent time-dependent and somatotopically 
relevant glial hyperactivity related to inflammatory injury and pain. 
It seems that glial activity is more sensitive to deep tissue injury. Skin 
incision, a model of postoperative pain induced by cutaneous tissue 
injury, produces much weaker effects on glial marker expression than 
spinal nerve injury93. These findings are clinically relevant because 
most debilitating inflammatory pain conditions involve deep tissues 
or organs. Glial modulators that are designed to inhibit glial activa-
tion attenuate persistent hyperalgesia94, and importantly, basal pain 
threshold is usually not affected by glial inhibitors83,84, suggesting 
that glia selectively promote sensitization after injury.

Role of afferent nerve input. Increased primary afferent input not 
only activates postsynaptic neurons in the spinal dorsal horn and spi-
nal trigeminal nucleus but also can alter central glial activity. Blocking 
peripheral nerve conduction abolishes masseter muscle inflammation- 
induced upregulation of GFAP in the spinal trigeminal nucleus, 
suggesting that activation of central glia in response to peripheral 
inflammation depends on nerve input4,76. Similarly, glial activation 
in models of neuropathic pain is associated with primary afferent 
input77,78. Electrical stimulation of the rat sciatic nerve or dorsal root 
at a noxious intensity stimulates the release of CX3CL1 (fractalkine), 
increases microglial activation (as assessed by Iba1 immunoreactivity) 
in the spinal dorsal horn and increases pain sensitivity95,96. However, 
not all forms of nociceptive input upregulate glial function. Acute 
tissue injury produced by mustard oil irritant does not increase glial 
activation (as assessed by OX-42 and GFAP immunoreactivity) in 
the spinal cord97, which suggests that glial responses are selective 
to different forms of primary afferent input. With regard to inflam-
matory injury, sustained input from peripheral tissues, particularly 
those from deep muscle, joints and viscera, may be more likely to 
activate glia.

Peripheral immune signaling to the brain. Among the prototypical 
proinflammatory cytokines, IL-6 has been shown to act as a mes-
senger in conveying peripheral immune signals to the CNS. As early 
as 3 h after carrageenan-induced inflammation in the rat, the blood 
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levels of IL-6, but not of IL-1β or TNF-α, are increased. The increase 
in circulating IL-6 is associated with induction of COX-2 activity and 
PGE2 release in vascular endothelial cells of the brain (which express 
the IL-6 receptor)98,99. These responses are markedly attenuated by 
treatment with antibodies to IL-6, and neutralization of IL-6 attenu-
ates inflammatory hyperalgesia79.

Infiltration of immune cells into the CNS facilitates the induction 
of chronic pain. Migration of immune cells to the CNS is selective.  
A subpopulation of neutrophils that express the calcium-binding pro-
teins S100A8 and S100A9 migrate to the spinal cord after hindpaw 
inflammation and accumulate in the intraluminal and perivascular  

spaces100. CD4+ T cells infiltrate into the spinal cord, whereas  
NK cells and B lymphocytes are not found in the spinal cord after L5 
spinal nerve transection39 (but see ref. 38). Macrophages were not 
detected in the spinal cord after hindpaw inflammation and L5 spinal 
nerve transection39,100. However, after partial sciatic nerve ligation, 
peripheral macrophages or monocytes invade the spinal cord and 
differentiate into cells with a microglial phenotype101, suggesting 
that blood-borne immune cells make a direct contribution to glial 
responses in the CNS.

It is unclear whether the permeability of the blood-brain and 
blood-spinal cord barriers is altered after tissue or nerve injury and 
whether this facilitates the migration of immune cells and inflamma-
tory mediators into the CNS102–104. Infiltration of immune cells into 
the CNS is initiated by chemotactic signals. C5a is upregulated in 
spinal microglia after nerve injury49, and small inducible cytokine A2  
(SCYA2), CCL2 and endothelial leukocyte adhesion molecule-1 
are substantially upregulated in the choroid plexus in response to 
inflammation in the hindpaw105. Neutralization of CCL2 in the spinal 
cord abolishes the infiltration of monocytes or macrophages after  
nerve injury101.

Activation of neurons and glia in chronic pain
Neuron-to-glia signaling. Neurotransmitters, neuromodulators 
and inflammatory mediators are released from primary afferent 
terminals into the spinal cord61,106. CCL2 is packaged into large, 
dense-core vesicles in DRG neurons61, suggesting that it can be 
released in a manner similar to a neurotransmitter6. Upon arrival 
of a nerve impulse, neural and immune mediators such as gluta-
mate, ATP, substance P, CGRP, brain-derived neurotrophic factor 
(BDNF), IL-6 and CCL2 are released. These act on receptors on 
the postsynaptic nerve terminal and on microglia and astrocytes, 
modulating glial activity (Fig. 3). This has been the topic of numer-
ous recent reviews1–6,107.

Neurons can regulate the activity of microglia through multiple 
cellular pathways. A recent study has described a microglia-specific 
signaling pathway that is mediated through neuregulin-1 (NRG-1), a 
growth and differentiation factor that is released from primary afferent  
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Figure 3  Activation of glia and neurons in the dorsal horn of the spinal 
cord after peripheral injury. (a) Microglia-neuron interactions. Upon 
activation, afferent nerve terminals release neurotransmitters, substance 
P, CGRP, glutamate (Glu), ATP and BDNF, as well as inflammatory 
mediators including IL-6 and CCL2 and the growth and differentiation 
factor neuregulin-1 (NRG-1), into the spinal cord. Three examples are 
shown. (1) Neuronal NRG-1 acts on microglial erbB2, leading to IL-1β 
release. (2) Microglial cathepsin S (catS) cleaves neuronal CX3CL1, which 
binds CX3CR1 and stimulates phosphorylation of p38 MAPK in microglia. 
This pathway may be inhibited by protein-coupled receptor kinase 2 
(GRK2). (3) ATP binds P2X4 and induces BDNF release from microglia, 
which upon binding TrkB receptor induces a shift in the chloride anion 
gradient and GABAA receptor-mediated depolarization in dorsal horn 
neurons. (b) Astrocyte-neuron interactions. (1) Astrocytes release 
glutamate and D-serine, which bind extrasynaptic and synaptic NMDA 
receptors on neurons, respectively. (2) Injury-induced downregulation of 
astrocytic GLT-1 alters glutamate homeostasis in the synaptic cleft.  
(3) TNF-α activates the JNK1 pathway, which leads to release of CCL2 
and alterations in NMDAR and AMPAR activity. (c) Cross-talk between 
nerve terminals, astrocytes and glia. (1) TLR priming and purinergic 
signaling increase IL-1β release by glia, which modulates NMDA receptor 
activity on postsynaptic neurons. TIMPs in astrocytes inhibit MMP-
mediated cleavage of pro–IL-1β. (2) Microglial IL-18 binds IL18R on 
astrocytes and induces NF-κB activity and upregulation of inflammatory 
cytokines. Dashed lines represent multiple intermediate signaling events.
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terminals and binds to the receptor tyrosine kinase erbB2 on  
microglia108. This leads to activation of spinal microglia, release of 
proinflammatory cytokines (including IL-1β), chemotaxis and the 
development of pain hypersensitivity108 (Fig. 3a). Interestingly, 
microglial TLR4 might act as an atypical, nonstereoselective opioid 
receptor107. Morphine seems to bind the same domain of TLR4 as 
lipopolysaccharide and induces the release of proinflammatory 
cytokines from glia. This raises the possibility that in addition to their 
analgesic properties, endogenous opioids might directly stimulate 
microglial activity. Activation of the Janus kinase–signal transducer 
and activator of transcription-3 (JAK-STAT3) pathway in micro-
glia by IL-6 has also been shown to be important for allodynia after  
nerve injury109. However, the effect of IL-6 on microglia is prob-
ably mediated by neurons because the IL-6 receptor is abundantly 
expressed on neurons98,99,110.

There is evidence that microglia are subtly involved in suppressing 
pain. G protein–coupled receptor kinase 2 (GRK2) is a ubiquitously 
expressed negative regulator of G protein–coupled receptors111. Mice 
in which GRK2 expression is reduced by 50% (Grk2+/−) show enhanced 
and prolonged hyperalgesia after carrageenan-induced hindpaw 
inflammation83, which suggests that GRK2 suppresses inflammatory 
hyperalgesia. Selective knockdown of GRK2 in microglia and macro
phages (by crossing Grk2fl/+ mice with mice expressing Cre under 
the control of the LysM (microglia-, macrophage- and granulocyte- 
specific promoter) increases the duration of hyperalgesia112. These 
results suggest that GRK2 in microglia or macrophages controls the 
duration of inflammatory hyperalgesia (Fig. 3a).

The activation of astrocytes is modulated by neuronal activity after 
peripheral injury76. Inhibition of neuronal activity reduces GFAP 
expression in the spinal cord after nerve injury113. Garrison et al.114 
showed that nerve injury–induced upregulation of GFAP depends on 
NMDA receptor activity, mediated directly by glutamatergic synaptic 
input115,116. In an ex vivo medullary slice preparation, application of 
substance P or CGRP induced a substantial increase in GFAP in the 
spinal trigeminal complex76, although it is unclear whether this is a 
direct effect of binding to astrocytes. Furthermore, in the absence 
of κ-opioid receptors or their endogenous ligand dynorphin, nerve 
injury–induced upregulation of GFAP in the spinal dorsal horn is 
abrogated, which suggests that opioid signaling can also modulate 
astrocyte activation117. Upon activation, several signaling events in 
astrocytes mediated by NF-κB118–120, c-Jun N-terminal kinase-1 
(JNK1)121 and tissue inhibitors of metalloproteinases (TIMPs)106,122 
contribute to the development of hyperalgesia (Fig. 3c).

Glia-cytokine-neuron interactions. Both microglia and astrocytes 
release substances that influence neuronal activity. Activated micro-
glia release several mediators that act on neurons and sensitive noci-
ceptors4,123–125. One example of a reciprocal interaction between 
microglia and neurons involves the chemokine CX3CL1 (Fig. 3a). 
CX3CL1 is expressed in primary sensory neurons and dorsal horn 
neurons95,123,124. CX3CL1 is normally anchored to the cell membrane 
by a mucin stalk that can be cleaved by protease activity. Upon pri-
mary afferent stimulation the lysosomal cysteine protease cathepsin S  
is released from microglia and cleaves CX3CL1, which is located 
on the surface of dorsal horn neurons. CX3CL1 in turn activates its 
receptor CX3CR1 on microglia, which leads to phosphorylation of 
p38 MAPK in microglia95,126. Another example involves purinergic 
signaling (Fig. 3a). ATP, which can be derived from multiple sources 
including nerve terminals, induces BDNF release from microglia 
by activating P2X4R127. BDNF from microglia binds to the TrkB  

receptor on neurons and induces a shift in the chloride anion gradient 
in dorsal horn nociceptive neurons. This increases the excitability of 
lamina I nociceptive neurons through GABAA receptor–mediated 
depolarization125 (Fig. 3a).

Given their close proximity and intimate association with neurons, 
astrocytes are in a unique position to interact with neurons in regulat-
ing synaptic activity. The release of glutamate at nerve terminals acti-
vates metabotropic glutamate receptors on astrocytes, which increases 
Ca2+ mobilization in astrocytes. This leads to the release from astro-
cytes of a battery of mediators, including glutamate, d-serine and ATP, 
which in turn modulate neuronal activity128. NMDA receptors have 
an important role in synaptic plasticity and persistent pain. d-serine, a 
co-agonist of NMDA receptors, is released from astrocytes along with 
glutamate. d-serine acts on synaptic NMDA receptors while astro-
cytic glutamate binds to extrasynaptic NMDA receptors (Fig. 3b).  
The astrocytic glutamate transporter (GLT-1) buffers glutamate 
released into synapses to prevent excessive activation of postsynaptic 
glutamate receptors. However, GLT-1 is downregulated after injury129, 
and the glutamate-glutamine shuttle between astrocytes and neurons 
is altered130,131. These changes in synaptic glutamate homeostasis lead 
to increased dorsal horn excitability and contribute to the develop-
ment of persistent pain4,132,133 (Fig. 3b).

Among the many immune- or glia-derived mediators that are 
related to pain hypersensitivity, IL-1β is a key cytokine that modulates 
microglia, astrocytes and neurons76,134,135. ATP induces the release of 
IL-1β from microglia in spinal cord slices in a manner that requires 
P2X7 receptors135. ATP-induced release of IL-1β requires priming of 
TLRs by lipopolysaccharide, suggesting that this occurs only upon 
injury. IL-1β release is also mediated by CX3CL1 signaling and activa-
tion of p38 MAPK in microglia136,137. IL-1β is also selectively upregu-
lated in astrocytes in the spinal cord, spinal trigeminal nucleus and 
rostral ventromedial medulla in models of cancer pain, inflammation 
and nerve injury74,76,106,138,139, which suggests that astrocytes can act 
as an alternative source of this inflammatory cytokine. After spinal 
nerve ligation injury, pro–IL-1β is cleaved by MMP-9 in microglia 
and MMP-2 in astrocytes, but not by the cysteine protease caspase-1,  
a key enzyme that is responsible for the production of mature  
IL-1β106. IL-1β is also an important messenger between glia and neurons. 
The IL-1 receptor colocalizes with NMDA receptors on neurons74,76. 
Activation of IL-1 receptors facilitates NMDA receptor phosphorylation, 
induces changes in synaptic strength and results in behavioral hyperal-
gesia74,76,133 (Fig. 3c). However, the role of IL-1β in persistent pain also 
involves NMDA receptor–independent mechanisms139.

TNF-α is upregulated in pain pathways after injury and secreted 
by immune and glial cells72,74. TNFα induces the phosphoryla-
tion of JNK1 and activates NF-κB in astrocytes, leading to CCL2 
release118,121. CCL2 then acts on CCR2 receptors on neurons and 
interacts positively with neuronal NMDA and AMPA receptors121 
(Fig. 3b). In the rostral ventromedial medulla, which is responsible for 
descending pain modulation, TNFα is induced after nerve injury and 
facilitates NMDA receptor phosphorylation74. TNFα also stimulates 
phosphorylation of the GluA1 subunit of the AMPA receptor and its 
trafficking to the membrane in dorsal horn neurons140. These findings  
strengthen the view that glia-derived proinflammatory cytokines 
interact with excitatory amino acid receptors.

IL-18, an inflammatory cytokine of the IL-1 family, acts as a mes-
senger between microglia and astrocytes141 (Fig. 3c). After spinal 
nerve injury, IL-18 is upregulated in microglia, and its receptor 
IL-18R is upregulated selectively on astrocytes in the spinal cord. 
IL-18 signaling leads to activation of NF-κB in astrocytes and the 
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development of neuropathic pain behavior in rats. IL-18 may also  
contribute to descending pain facilitation in the brainstem. 
Activation of spinal 5-HT3 receptors increases pain hypersensitiv-
ity by a mechanism that involves IL-18, microglia and astrocytes  
(M. Gu, R.D., K.R. and F. Wei, unpublished observations).

Therapeutic opportunities
Insight into the roles of various cell types and soluble mediators in 
pain has spurred the development of potential analgesic targets. 
However, findings from preclinical studies have yet to be translated 
into the clinical setting. Here we discuss some recent developments 
in targeting cytokines, chemokines, resolvins and glial modulators 
as analgesics.

Anti-inflammatory cytokines and cytokine inhibitors. Kineret 
(anakinra, Amgen), a recombinant human IL-1 receptor antagonist  
(IL-1ra), and two TNF inhibitors, Enbrel (etanercept, Pfizer and Amgen)  
and Remicade (infliximab, Centoco), inhibit the pain associated with 
rheumatoid arthritis and other inflammatory conditions142. Arcalyst 
(rilonacept, Regeneron) binds IL-1α and IL-1β with high affinity and 
has shown promise in treating inflammatory diseases143,144. The drug 
is a fusion protein that comprises the extracellular domain and acces-
sory protein of the human IL-1 receptor. As an IL-1 blocker, rilona-
cept has advantages over monomeric soluble IL-1 receptors, which 
bind IL-1 with low affinity and in some cases can act as an agonist. 
Rilonacept suppresses hyperalgesia and inflammation in a model of 
arthritis that is induced by injecting monosodium urate crystals into 
the mouse ankle joint144. In a pilot study that involved 10 patients with 
chronic active gouty arthritis, rilonacept significantly reduced pain 
after subcutaneous injection and was well tolerated143.

IL-10, an anti-inflammatory cytokine that is secreted by mono-
cytes and TH2 cells, reverses neuropathic pain behavior in animal 
studies145. To improve delivery and increase the duration of effect, 
a new formulation was designed comprised of plasmid DNA encod-
ing IL-10 (pDNA–IL-10) encapsulated with microparticles of PLGA 
(poly(lactic-co-glycolic-acid)), a synthetic degradable polymer145. 
This formulation permits slow release of IL-10 and increases IL-10 
production compared to unencapsulated pDNA–IL-10. In a model 
that involves chronic constriction of the sciatic nerve, intrathecal 
injection of these microparticles abrogated mechanical allodynia for 
more than 70 d after a single administration145. PLGA microparti-
cles can also induce the recruitment of macrophages and stimulate 
phagocytic activity, so further studies are required to elucidate their 
precise mechanism of action.

Proresolution resolvins. The therapeutic utility of resolvins as anal-
gesics has recently gained interest8. One advantage of these lipid 
mediators is that they act by both suppressing inflammation and by 
inhibiting the mechanisms of synaptic plasticity that are involved in 
the transition to chronic pain. Another desirable property of resolvins 
is that they do not affect the baseline pain threshold but suppress 
injury-induced pain in preclinical studies8. In contrast with broad 
anti-inflammatory agents, proresolution lipid mediators do not alter 
protective inflammatory responses and are less likely to increase the 
risk of infection.

Complement receptor antagonists. PMX53, a cyclic hexapeptide 
compound, is a complement C5a receptor antagonist and inhib-
its inflammatory hyperalgesia in preclinical studies31 without 
altering the baseline pain threshold. However, in a double-blind,  

placebo-controlled clinical study of individuals with rheumatoid 
arthritis, PMX53 did not reduce synovial inflammation146. Whether 
PMX53 attenuated pain in these patients was not determined.

Glial modulators. A wealth of preclinical studies support a role for glia 
in the development of chronic pain1–6,147. The most commonly used 
glial modulators include minocycline (a semisynthetic tetracycline), 
fluorocitrate (a cell metabolic toxin), propentofylline (a xanthine 
derivative and phosphodiesterase inhibitor), methionine sulfoximine 
(an astroglial glutamine synthetase inhibitor) and Mac-1-saporin  
(a CD11b receptor and saporin conjugate; Advanced Targeting Systems).  
Among these agents, minocycline is used clinically as an antibiotic 
and propentofylline has been used in clinical trials for Alzheimer’s 
disease. The potential analgesic efficacy of these glial modulators 
in patients has not been established. AV411 (ibudilast, Avigen/
MediciNova), a glial inhibitor and inhibitor of phosphodiesterase 
activity, potentiates opioid analgesia in rats148 and in a phase 2 clinical 
trial (NCT00576277) has shown promise in treating neuropathic pain. 
The plasma concentration of AV411 plasma correlated with decreased 
pain and the drug was well tolerated (http://www.globenewswire.com/
newsroom/news.html?d=130518).

Concluding remarks
We now fully appreciate the importance of interactions between the 
immune and nervous systems in pain. The body’s innate immune 
cells respond to injury with an inflammatory response that activates 
pain pathways. Soluble mediators released by immune and glial cells 
act on nociceptors, increasing synaptic strength and altering pain 
sensitivity. After activation of peripheral immune cells and nocicep-
tors, the initial acute pain response, if left unabated, can develop into 
chronic pathological pain.

There remain crucial gaps in our knowledge. The role of innate 
immune activation in pain is quite clear, but relatively little is known 
about the role of the adaptive immune system in chronic inflammatory 
conditions and their contribution to chronic pain. Furthermore, most 
studies have investigated only the protective phase of pain associated 
with initial injury. Current animal models are limited by an acute 
inflammatory response and short-lived hyperalgesia, which attenu-
ate over time. Better models are needed to explore the contributions 
of immune cells in a chronic setting and their role in maintaining a 
chronic pain state. Further studies of the involvement of immune cells 
and glia in pain should make it possible to identify novel targets and 
more selective inhibitors.
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